Model Reference Adaptive Controlled Application to the Vector Controlled Permanent Magnet Synchronous Motor Drive
نویسندگان
چکیده
This paper presents the parameters of permanent magnet synchronous motor i.e. speed (r), stator resistance (RS), q-axis inductance (Lq), and torque (Ts) is to be estimated by using Model Reference adaptive System(MRAS). To improve the performance of speed sensor less permanent magnet synchronous motor drives, especially at low speeds by identifying stator resistance together with speed. Several speed estimation methods for sensor less PMSM drives have been proposed but the Performance is not satisfactory at low speed. Model-based speed and stator resistance estimators are the most common schemes used in the literature. The stator resistance varies with the temperature of the machine, so it should be estimated adaptively. The proposed technique is completely Independent of stator resistance (Rs) and is less parameter sensitive, as the estimation-algorithm is only dependent on q-axis stator inductance (Lq). Also, the method requires less computational effort as the simplified expressions are used in the MRAS. In this proposed scheme sensor less technique is used, the aim at eliminating mechanical sensor, which are rather expensive and delicate, especially if accurate mounting and calibration are necessary, and at obtaining rotor position and angular velocity from the measurement of only electrical quantities. But the precision of position estimation often depends on motor’s parameters. To control PMSM position and speed sensors are indispensable. So the vector control technique is used for the control the PMSM position and speed sensor. MATLAB/ simulink based simulation is discussed.
منابع مشابه
Design and Implementation of a High-Precision Position Controller for Permanent Magnet Synchronous Motor Based on a New Gain Scheduling Approach
The direct drive permanent magnet synchronous motor (DD-PMSM) is a suitable choice for high-precision position control applications. Among various control methods of this motor, the vector control approaches especially the field oriented control has a high-performance in the industrial drives. In this method, the components of stator current are controlled independently and as a result, the tor...
متن کاملAdaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors
Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...
متن کاملTuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملVery Fast Field Oriented Control for Permanent Magnet Hysteresis Synchronous Motor
In this paper, a new field oriented control scheme with maximum torque for permanent magnet hysteresis synchronous (PMHS) motor has been presented. Vector control method provides significant improvement to the dynamic performance of ac motors but in this method d- axis current is controlled such as the ratio of motor torque to motor current is a maximum, then the dynamic performance will be ver...
متن کاملAdaptive and intelligent control of permanent magnet synchronous motor (PMSM) using a combination of fuzzy logic and gray wolf algorithm under fault condition
Nowadays, permanent magnet synchronous motors have been widely used in industry due to the elimination of excitation losses, longer life and higher efficiency. Errors in engine and drive systems are unavoidable during operation. Therefore, a suitable scenario should be considered for when these systems fail. If the necessary predictions and control algorithms are not considered for the error co...
متن کاملInner Permanent Magnet Synchronous Machine Optimization for HEV Traction Drive Application in Order to Achieve Maximum Torque per Ampere
Recently, Inner permanent magnet (IPM) synchronous machines have been introduced as a possible traction motor in hybrid electric vehicle (HEV) and traction applications due to their unique merits. In order to achieve maximum torque per ampere (MTPA), optimization of the motor geometry parameters is necessary. This paper Presents a design method to achieve minimum volume, MTPA and minimum ...
متن کامل